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Abstract

Skeletal muscle undergoes metabolic remodelling in response to environmental hypoxia, yet aspects of this process
remain controversial. Broadly, environmental hypoxia has been suggested to induce: (i) a loss of mitochondrial
density; (ii) a substrate switch away from fatty acids and towards other substrates such as glucose, amino acids and
ketone bodies; and (iii) a shift from aerobic to anaerobic metabolism. There remains a lack of a consensus in these
areas, most likely as a consequence of the variations in degree and duration of hypoxic exposure, as well as the
broad range of experimental parameters used as markers of metabolic processes. To attempt to resolve some of
the controversies, we performed a comprehensive review of the literature pertaining to hypoxia-induced changes
in skeletal muscle energy metabolism. We found evidence that mass-specific mitochondrial function is decreased prior
to mass-specific mitochondrial density, implicating intra-mitochondrial changes in the response to environmental
hypoxia. This loss of oxidative capacity does not appear to be matched by a loss of glycolytic capacity, which on the
whole is not altered by environmental hypoxia. Environmental hypoxia does however induce a selective attenuation
of fatty acid oxidation, whilst glucose uptake is maintained or increased, perhaps to support glycolysis in the face of a
downregulation of oxidative metabolism, optimising the pathways of ATP synthesis for the hypoxic environment.
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Background
Skeletal muscle, like all oxidative tissues of the body, is
critically dependent on a supply of oxygen to maintain
energetic and redox homeostasis. ATP can be synthesised
in the skeletal muscle in an oxygen-dependent manner in
the mitochondria via oxidative phosphorylation, utilising
substrates such as glycolytically derived pyruvate, fatty
acids, amino acids and ketone bodies, but also in an
oxygen-independent manner in the cytosol, via glycolysis
with the resulting pyruvate converted to lactate (Figure 1).
Under conditions of a plentiful oxygen supply, however,
oxidative phosphorylation would normally meet the ma-
jority of the cell’s ATP requirements [1], due to the greater
range of substrates available and the much higher yield of
ATP derived from glucose.
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Environmental hypoxia, either in a hypobaric/normobaric
hypoxia chamber or at high altitude, decreases the partial
pressure of arterial oxygen (Pa(O2)). In order to compen-
sate for this, oxygen delivery is improved via changes in
resting ventilation rate, circulating haemoglobin concentra-
tion and capillary density [3], whilst metabolic remodelling
at the tissues might alter oxygen utilisation. Studies in cul-
tured cells suggest that the transcription factor, hypoxia-
inducible factor 1-alpha (HIF1α), is upregulated in hypoxia,
increasing glycolysis [4] and thereby attenuating oxygen
utilisation and ATP synthesis [5]. A loss of cellular
mitochondrial content may be driven by the downregulation
of mitochondrial biogenesis factors such as peroxisome
proliferator-activated receptor γ co-activator 1 alpha or beta
(PGC1α/β) in tandem with the upregulation of mitochon-
drial autophagy factors such as BCL2/adenovirus E1B
19 kDa interacting protein (BNIP3) [6]. Meanwhile, the up-
regulation of pyruvate dehydrogenase kinase (PDK) isoforms
deactivates pyruvate dehydrogenase, which impairs pyruvate
entry into the TCA cycle, resulting in a high rate of glycolysis
Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:jah212@cam.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://www.extremephysiolmed.com/content/3/1/19


Figure 1 Energy metabolism in the skeletal muscle. Glycolysis represents an oxygen-independent source of ATP and pyruvate. Pyruvate is
reduced in the cytosol to form lactate or oxidised in the mitochondrial matrix to form acetyl CoA, which feeds into the TCA cycle. β-oxidation of
fatty acids and the TCA cycle produce reduced intermediates, NADH and FADH2, which are oxidised by complexes of the electron transport chain.
Electrons are transferred to the final oxygen acceptor, O2, and the free energy from this process is used to pump H+ ions into the intermembrane
space. The resulting electrochemical gradient is the driving force for the oxidative phosphorylation of ADP. ETF electron-transferring flavoprotein,
I-IV complexes of the electron transport chain, F0 and F1 subunits of the ATP synthase, NADH β-nicotinamide adenine dinucleotide reduced, NAD
β-nicotinamide adenine dinucleotide, Cn acetyl CoA with carbon chain length n, FFA free fatty acids. Figure adapted from [2].
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relative to oxidative phosphorylation, the Warburg effect
[7,8]. Finally, the efficiency of mitochondrial electron trans-
fer and thus oxygen utilisation is improved by a HIF1α-
dependent switch in subunits at complex IV [9].
Despite this valuable mechanistic work in cell cultures,

there remains a paucity of research into the effects of en-
vironmental hypoxia on energy metabolism in different
mammalian tissues in vivo. The skeletal muscle is an inter-
esting model tissue, as it has a relatively high capacity for
respiration, with metabolic rates altered acutely by exertion
and numerous metabolic features (for example, mitochon-
drial density and/or substrate preference) altered chronic-
ally by, e.g. training [10], diet [10] and environmental
factors [11]. In humans, the muscle is easily accessible for
biopsy, even under field conditions.
The aim of this review was to collate evidence pertain-

ing to the remodelling of metabolic processes in mamma-
lian skeletal muscle in vivo in response to environmental
hypoxia, accounting for variations in degree and duration
of hypoxic exposure.

Methods
Search strategy
A search protocol was developed to identify relevant re-
search articles with unbiased results. The search term
‘(altitude OR hypoxia) AND “skeletal muscle” AND (mito-
chondria OR glycolysis OR “fatty acid” OR “oxidative
phosphorylation”)’ was entered into the database PubMed
in June 2014, and the titles and abstracts of all results were
assessed for relevance. The reference lists of review arti-
cles arising from this initial search were reviewed for re-
search papers which did not appear in the original search,
and any relevant articles were also included. Any publica-
tion date or animal model was accepted for inclusion, pro-
viding that a skeletal muscle was studied. Finally, any
type (e.g. ascent to altitude, habitation of a hypoxic cham-
ber, ischaemia and anaemia), intensity, duration and fre-
quency of hypoxic exposure was considered acceptable for
more thorough analysis.

Search results
The search returned 343 results in June 2014. A further
21 papers cited in reviews found by the initial search
term were added due to relevance. Of these 364 papers,
251 were excluded as irrelevant and 113 reviewed in de-
tail. An aim of this review was to investigate the conse-
quences of variations in degree and duration of hypoxic
exposure on mammalian muscle energy metabolism. Thus,
from the articles identified as relevant, we selected those in
which a mammal was exposed to continuous environmen-
tal hypoxia of greater than 1 day and aspects of skeletal
muscle energy metabolism were assessed. Where possible,
observations that may have been influenced by confound-
ing factors were excluded. To this end, studies using gen-
etically manipulated animal models, pre-acclimatised or
evolutionarily adapted human cohorts, or confounding in-
terventions such as exercise or pharmacological agents,
were excluded. This left 33 articles, of which 14 used
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human m. vastus lateralis, 6 used a mouse skeletal muscle
and 13 used a rat skeletal muscle. A flowchart of the selec-
tion process is shown in Figure 2, and further details of
the reasons for exclusion are given in Additional file 1:
Table S1.
Data extraction
In the remaining 33 articles, we recorded all reported ob-
servations that could be used as a marker of one of four
metabolic processes of interest (glycolysis, β-oxidation,
TCA cycle and oxidative phosphorylation) plus mitochon-
drial density. Ketolysis, amino acid metabolism and high-
energy phosphate transfer were excluded, as there were
very few observations of biomarkers of these processes.
Expression, levels or activity of appropriate enzymes; ex-
pression and levels of regulating transcription factors; and
functional respirometry data were considered as markers
(Table 1).
Data analysis
The degree and duration of hypoxic exposure was noted
and has been described uniformly in this review. Degree
is reported as an estimate of the minimum atmospheric
partial pressure of oxygen p(O2)min reached by every
member of the cohort during each study. Duration is re-
ported as the total time spent in an environment with a
p(O2) <15.0 kPa (equivalent to being >3,000 m above sea
Figure 2 Selection process for identifying relevant papers in
the literature.
level). Where hypoxic degree was not reported in p(O2),
conversions were made to estimate the p(O2)min in the
reported condition using the following formula, adapted
from West 1996 [12] where h is the height above sea
level in kilometres.

p O2ð Þ kPað Þ ¼ 0:02793 e 6:63268 −0:1112 h −0:00149 h2ð Þ

If appropriate, the results reported in each paper were
sub-divided into those pertaining to different experimen-
tal “settings”. We define a setting as a uniform hypoxic
challenge (degree and duration), exerted on one particu-
lar species and muscle or muscle group within a single
study.
For each setting, all biomarkers described in Table 1

were considered and are reported here. In addition, a
single result for each of the four metabolic processes
and mitochondrial density was inferred from each set-
ting as follows: increase (where at least one biomarker of
a process was significantly increased by hypoxia, and
none decreased); decrease (where at least one biomarker of
a process was significantly decreased by hypoxia, and none
increased); unchanged (where at least one biomarker was
measured and no biomarkers were significantly altered
by hypoxia); and unclear (where at least one biomarker
of a process was significantly increased and another sig-
nificantly decreased). In the case of a conflict in re-
sults, however, where a direct measurement was taken
(e.g. mitochondrial density by electron microscopy), this
was given priority over an established indirect proxy
(e.g. mitochondrial density by citrate synthase activity)
[13], which in turn was given priority over expression,
levels or activity of known regulators of that process
(e.g. PGC1α). This occurred in one instance in the study by
Chaillou et al. [14], where two established markers of mito-
chondrial density (citrate synthase activity and complex IV
activity) decreased in a rat plantaris muscle, whilst one
upstream regulator of mitochondrial biogenesis (PGC1α)
increased. This setting was thus labelled as a decrease.
To untangle the effects of different degrees and dura-

tions of hypoxia, observations were sub-categorised by
severity in terms of atmospheric partial pressure of O2

(p(O2)): high (11.7 < p(O2) ≤15.0 kPa, ca. 3,000–5,000 m
above sea level), very high (10.0 < p(O2) ≤11.7 kPa, ca.
5,000–6,250 m above sea level) or extreme (p(O2) ≤10.0
kPa, ca. 6,250+ m above sea level); and duration (t): short
term (0 < t ≤14 d in hypoxia), medium term (14 < t ≤
42 d) and long term (t > 42 d).

Results
Glycolysis
For biomarkers of glycolysis, 25 hypoxic settings were
identified across 15 papers, the results of which are sum-
marised in Table 2. The markers of glycolysis in human
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Table 1 Accepted biomarkers for glycolysis, β-oxidation, TCA cycle function, oxidative phosphorylation and mitochondrial
density

Aspect of metabolism Biomarkers

Expression, levels or activity
of enzymes/transporters

Expression, levels
or activity of regulators

Rate measurements Other validated
markers [13]

Glycolysis

Monocarboxylate transporters (MCT)

Hexokinase (HK)

Phosphoglucose isomerase (PGI)

Phosphofructokinase (PFK)

Aldolase (ALD)

Triose phosphate isomerase (TPI)

Glyceraldehyde 3-phosphate
dehydrogenase (G3PDH)

Phosphoglycerate kinase (PGK)

Phosphoglycerate mutase (PGM)

Enolase (ENO)

Pyruvate kinase (PyK)

Lactate dehydrogenase (LDH)

Glucose oxidation

β-oxidation

Carnitine acylcarnitine translocase (CACT)

Carnitine palmitoyl transferases (CPT)

Acyl CoA dehydrogenases

Enoyl CoA hydratase (ECAH)

Enoyl CoA isomerase (ECAI)

L-3-hydroxyacyl CoA dehydrogenase (HOAD)

Thiolase (THI)

PPARα

Uptake/utilisation of fatty acids

Oxidative phosphorylation with
fatty acid substrates

TCA cycle

Pyruvate dehydrogenase

Citrate synthase

Aconitase

Isocitrate dehydrogenase

α-ketoglutarate dehydrogenase

Succinyl CoA synthetase

Succinate dehydrogenase

Fumarase

Malate dehydrogenase

Oxidative
phosphorylation

Complex I

Complex II

Complex III

Complex IV
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Table 1 Accepted biomarkers for glycolysis, β-oxidation, TCA cycle function, oxidative phosphorylation and mitochondrial
density (Continued)

Complex V

Electron transferring flavoprotein (ETF)

Oxidative phosphorylation

Mitochondrial density
(mitochondrial density
measurements by
electron microscopy)

Bax

Bcl-2*

BNIP3*

PGC-1α

Citrate synthase
activity

Complex IV activity

*biomarkers used as negative indicators of the process.
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m. vastus lateralis decreased in four settings [15-18], in-
creased in two [19,20], remained unchanged in five
[18,20-22] and were unclear in one [15]. Similar pat-
terns were found in rodents [23-28] and appeared to
be unrelated to the degree of hypoxic exposure. The
effect of hypoxia on individual glycolytic enzymes does
not reveal a striking pattern, with most unchanged, sig-
nificantly increased or significantly decreased in one of
the studies.

β-oxidation
For biomarkers of β-oxidation, 22 hypoxic settings were
identified across 15 papers, the results of which are sum-
marised in Table 3. There was a tendency towards a de-
crease in β-oxidation following a hypoxic stimulus, with a
decrease in at least one biomarker reported in 8/22 set-
tings [16,18,23,28,30-32] and none showing an increase.
A commonly used marker of β-oxidation was the activity
of 3-hydroxyacyl-CoA dehydrogenase (HOAD). HOAD
activity was unchanged in five settings [15,17,18,33] and
decreased in one setting [18] in humans, with a similar ra-
tio of results in rodents [23,24,28,31,32,34]. Assessment of
levels and/or activity of proteins associated with mito-
chondrial fatty acid import, e.g. carnitine-acylcarnitine
translocase (CACT) [16] and carnitine pamitoyltransferase
1 (CPT1) [32] suggested that these are decreased by sus-
tained hypoxia, an effect possibly mediated through
the HIF-PPARα signalling axis, as levels of peroxisome
proliferator-activated receptor alpha (PPARα) were lowered
by environmental hypoxia in mice [31]. Acyl-carnitine-
supported respirometry rates were lower following
hypoxic exposure, when malate plus palmitoyl carni-
tine [31,32], but not octanoyl carnitine [35,36], were used
as substrates.
TCA cycle
For biomarkers of TCA cycle function, 29 hypoxic settings
were identified across 20 papers, the results of which are
summarised in Table 4. A decrease in biomarkers of TCA
cycle activity was measured in 3/10 settings in humans
[16-18] and 8/19 settings in rodents [14,23,27,28,34,37,38],
whilst none reported an increase in either group. More-
over, the loss of TCA cycle enzyme activity appears to be
dependent on the degree of hypoxic exposure, with 1/14
(7%), 7/15 (47%) and 3/3 (100%) observations at high, very
high and extreme degrees of hypoxia, respectively, showing
such a loss. This appears to be unrelated to the particular
enzyme assayed with activity of aconitase (1 decreased, 2
unchanged), citrate synthase (5 decreased, 13 unchanged),
malate dehydrogenase (2 decreased, 4 unchanged) and suc-
cinate dehydrogenase (2 decreased, 3 unchanged) either
falling or not changing following hypoxic exposure.

Oxidative phosphorylation
For biomarkers of oxidative phosphorylation, 19 hypoxic set-
tings were identified across 14 papers, the results of which
are summarised in Table 5. Markers of oxidative phosphoryl-
ation decreased in 3/4 human settings [16,18,36] and 8/15
rodent settings [14,25,27,29,38,41], with an increase in 1 of
the 15 rodent settings [42]. Complexes I [18,27], III [16],
IV [18], V [16,18,27] and the electron-transferring flavo-
protein [16] were each shown to be diminished after ex-
posure in various studies. Respirometry performed at high
altitude revealed a decrease in oxidative capacity in the
presence of both complexes I and II substrates [36].

Mitochondrial density
For biomarkers of mitochondrial density, 34 hypoxic set-
tings were identified across 23 papers, the results of
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Table 2 The effects of environmental hypoxia on biomarkers of glycolysis in skeletal muscle

First author Year Organism Muscle model Hypoxia model p(O2)min (kPa) Duration (d) Marker Change

Green [15] 1992 Human vl 4,300 m 12.8 1 Phosphofructokinase activity ↓

Hexokinase activity =

Roberts [20] 1996 Human vl 4,300 m 12.8 1 Glucose oxidation =

Pastoris [29] 1995 Rat gnm 10% O2 10.1 3 Hexokinase activity =

Phosphofructokinase activity ↑

Lactate dehydrogenase activity =

Pyruvate kinase activity ↓

Pastoris [29] 1995 Rat sol 10% O2 10.1 3 Hexokinase activity =

Phosphofructokinase activity ↓

Lactate dehydrogenase activity =

Pyruvate kinase activity =

Dutta [28] 2009 Rat mix 349 mmHg 10.3 7 Lactate dehydrogenase activity ↑

Vigano [16] 2008 Human vl 4,559 m 12.4 8 Enolase levels ↓

van Hall [21] 2009 Human vl 4,100 m 13.1 14 Lactate dehydrogenase activity =

De Palma [27] 2007 Rat gnm 10% O2 10.1 14 β-enolase levels ↓

Phosphoglyercomutase 2 levels ↓

Pyruvate kinase levels ↑

Triose phosphate isomerase levels ↓

Young [22] 1984 Human vl 4,300 m 12.8 18 Hexokinase activity =

Lactate dehydrogenase activity =

Levett [18] 2012 Human vl 5,300 m 11.3 19 Hexokinase activity =

Roberts [30] 1996 Human vl 4,300 m 12.8 21 Glucose oxidation ↑

Green [15] 1992 Human vl 4,300 m 12.8 21 Phosphofructokinase activity ↓

Hexokinase activity ↑

Daneshrad [24] 2000 Rat sol 10% O2 10.1 21 Hexokinase activity ↑

Lactate dehydrogenase activity =

Phosphofructokinase activity =

Pyruvate kinase levels =

Green [19] 2000 Human vl 6,194 m 10.1 21 Lactate dehydrogenase activity ↑

Green [17] 1989 Human vl 8,848 m 7.1 40 Hexokinase activity ↓

α-GPDH activity =

Lactate dehydrogenase activity =

Phosphofructokinase activity =

Pyruvate kinase levels =

van Hall [21] 2009 Human vl 4,100 m 13.1 56 Lactate dehydrogenase activity =

McClelland [25] 2002 Rat sol 4,300 m 12.8 56 Lactate dehydrogenase levels =

Monocarboxylate transporter 1 levels =

Monocarboxylate transporter 4 levels ↓

McClelland [25] 2002 Rat pla 4,300 m 12.8 56 Lactate dehydrogenase levels =

Monocarboxylate transporter 1 levels ↓

Monocarboxylate transporter 4 levels ↓

McClelland [25] 2002 Rat gnm 4,300 m 12.8 56 Lactate dehydrogenase levels =

Monocarboxylate transporter 1 levels =

Monocarboxylate transporter 4 levels =
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Table 2 The effects of environmental hypoxia on biomarkers of glycolysis in skeletal muscle (Continued)

Abdelmalki [23] 1996 Rat sol 13% O2 13.1 64 Lactate dehydrogenase activity =

Phosphofructokinase activity ↑

Hexokinase activity =

Abdelmalki [23] 1996 Rat pla 13% O2 13.1 64 Lactate dehydrogenase activity =

Phosphofructokinase activity =

Hexokinase activity =

Abdelmalki [23] 1996 Rat rq 13% O2 13.1 64 Lactate dehydrogenase activity =

Phosphofructokinase activity =

Abdelmalki [23] 1996 Rat wq 13% O2 13.1 64 Lactate dehydrogenase activity =

Phosphofructokinase activity ↑

Levett [18] 2012 Human vl 8,848 m 7.1 66 Hexokinase activity ↓

Ou [26] 2004 Rat edl 5,500 m 11.0 90 Lactate dehydrogenase activity =

↑ Change in biomarker is indicative of an increase in β-oxidation in hypoxia.
= No change in biomarker in hypoxia.
↓ Change in biomarker is indicative of a decrease in β-oxidation in hypoxia.
Abbreviations: edl extensor digitorum longus, mix mixed skeletal, pla plantaris, q quadriceps, rq red quadriceps, sol soleus, vl vastus lateralis, wq white quadriceps.
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which are summarised in Table 6. Considering only
direct observations of mitochondrial density in human
m. vastus lateralis, 19 d at 5.300 m [18] and 40 d pro-
gressive decompression to the equivalent of 8,000 m [44]
proved insufficient to induce detectable changes, whilst
56 d at 5,000 m [45] and 66 d spend above 6,600 m [18]
resulted in a decrease in mitochondrial density. Consider-
ing all biomarkers of mitochondrial density, 4/13 (31%)
measures at high, 6/14 (43%) measures at very high and
4/7 (57%) measures in extreme hypoxia, resulted in a sig-
nificant decrease in biomarkers compared with baseline.

Summary of results
The effect of each hypoxic setting on glycolysis, β-oxidation,
TCA cycle, oxidative phosphorylation and mitochondrial
density is represented graphically in Figure 3, for all organ-
isms and in Figure 4 for human m. vastus lateralis only.

Discussion
In this review, we set out to understand the remodelling
of metabolic processes in the mammalian skeletal muscle
in vivo in response to environmental hypoxia, accounting
for variations in degree and duration of hypoxic expos-
ure. To do so, we reviewed the literature considering a
broad range of biomarkers pertinent to mitochondrial en-
ergy metabolism and glycolysis and collated the results to
gauge whether a consensus exists within the literature.
Whilst both human and rodent studies were included, we
initially considered all findings together for completion,
followed by data from human m. vastus lateralis in isola-
tion for clarity.
Environmental hypoxia induces a loss of mitochondrial

density in human m. vastus lateralis after long-term [18,48]
but not short-term [35] exposure. Although studies involv-
ing adapted populations were excluded from our analysis, it
is interesting to note that the skeletal muscle of high-
land Tibetans is less rich in mitochondria than that
of lowlanders [49], as this supports the idea that this
is an adaptive trait. Attenuation of oxidative processes,
such as β-oxidation [16,18,20,23,28,31,32], the TCA cycle
[14,16,17,23,27-29,34,38] and oxidative phosphorylation
[14,16,18,25,27,29,36,38,41], also seems to be induced by
environmental hypoxia. The effect of hypoxia on glycolytic
capacity is less clear, with some studies showing increased
[19,20] and others decreased [15-18] levels of biomarkers.
The hypoxia-induced downregulation of β-oxidation,

TCA cycle function and oxidative phosphorylation may
be secondary to a loss of mitochondrial density, as in
short-term (≤14 d) hypoxic settings, all were diminished in
at least some studies of human m. vastus lateralis, whilst
mitochondrial density remained unchanged (Table 7).
Some medium-term (≤42 d) and most long-term (>42 d)
settings resulted in a significant loss of skeletal muscle
mitochondrial density. This therefore suggests that
hypoxia-induced remodelling of mitochondrial pathways
precedes a loss of mitochondrial density. This notion re-
ceives support from Jacobs and colleagues, who measured
a loss of oxidative capacity, which persisted when respir-
ation was corrected to citrate synthase activity [36], an
established marker of mitochondrial density in human
muscle [13]. A possible mechanism underpinning this
might be that the mismatch in oxygen supply and demand
results in ROS production at complexes I and III. This
ROS production within the mitochondrion may result in
damage to intra-mitochondrial machinery and thus result
in loss of function. Alternatively, ROS are known to stabil-
ise HIF, which in the long term may induce changes in
mitochondrial density (through BNIP3 and PGC1α) [6,48]
and muscle mass, but may also remodel metabolic path-
ways in the short term. Indeed, complex I and aconitase,
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Table 3 The effects of environmental hypoxia on biomarkers of β-oxidation in skeletal muscle

First author Year Organism Muscle model Hypoxia model p(O2)min (kPa) Duration (d) Marker Change

Green [15] 1992 Human vl 4,300 m 12.8 1 HOAD activity =

Roberts [30] 1996 Human vl 4,300 m 12.8 1 Fatty acid oxidation =

Morash [31] 2013 Mouse mix 13% O2 13.1 1 PPARα levels ↓

CPT-1 levels ↓

CPT-1 activity ↓

HOAD activity =

Palmitate oxidation ↓

Palmitoyl carnitine OXPHOS ↓

Dutta [28] 2009 Rat mix 349 mmHg 10.3 7 CPT-1 activity =

Fatty acid oxidation ↓

HOAD activity ↓

Morash [31] 2013 Mouse mix 13% O2 13.1 7 PPARα levels ↓

CPT-1 levels ↓

CPT-1 activity ↓

HOAD activity =

Palmitate oxidation ↓

Palmitoyl carnitine OXPHOS ↓

Vigano [16] 2008 Human vl 4,559 m 12.4 8 CACT levels ↓

ECAH levels ↓

ECAI levels ↓

Jacobs [35] 2013a Human vl 4,559 m 12.4 10 Octanoyl carnitine OXPHOS =

Levett [18] 2012 Human vl 5,300 m 11.3 19 HOAD activity =

Daneshrad [24] 2000 Rat sol 10% O2 10.1 21 HOAD activity =

Green [15] 1992 Human vl 4,300 m 12.8 21 HOAD activity =

Roberts [30] 1996 Human vl 4,300 m 12.8 21 Fatty acid oxidation ↓

Takahashi [34] 1993 Rat pla 10% O2 10.1 28 HOAD activity =

Takahashi [34] 1993 Rat sol 10% O2 10.1 28 HOAD activity =

Jacobs [36] 2013b Human vl 3,454 m 14.2 28 Octanoyl carnitine OXPHOS =

Galbes [32] 2008 Rat q 4,000 m 13.3 35 CPT-1 activity ↓

CPT-1 levels ↓

HOAD activity ↓

Palmitoyl carnitine OXPHOS ↓

Green [17] 1989 Human vl 8,848 m 7.1 40 HOAD activity =

Abdelmalki [23] 1996 Rat sol 13% O2 13.1 64 HOAD activity =

Abdelmalki [23] 1996 Rat pla 13% O2 13.1 64 HOAD activity ↓

Abdelmalki [23] 1996 Rat rq 13% O2 13.1 64 HOAD activity =

Abdelmalki [23] 1996 Rat wq 13% O2 13.1 64 HOAD activity =

Levett [18] 2012 Human vl 8,848 m 7.1 66 HOAD activity ↓

Mizuno [33] 2008 Human vl 5,250 m 11.4 75 HOAD activity =

Ou [26] 2004 Rat edl 5,500 m 11.0 90 Palmitate uptake ↓

Palmitate oxidation ↑

↑ Change in biomarker is indicative of an increase in glycolysis in hypoxia.
= No change in biomarker in hypoxia.
↓ Change in biomarker is indicative of a decrease in glycolysis in hypoxia.
Abbreviations: edl extensor digitorum longus, mix mixed skeletal, pla plantaris, rq red quadriceps, sol soleus, vl vastus lateralis, wq white quadriceps.
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Table 4 The effects of environmental hypoxia on biomarkers of TCA cycle function in skeletal muscle
First author Year Organism Muscle

model
Hypoxia
model

p(O2)min (kPa) Duration (d) Marker Change

Morash [31] 2013 Mouse mix 13% O2 13.1 1 Citrate synthase activity =

Aconitase activity =

Green [15] 1992 Human vl 4,300 m 12.8 1 Succinate dehydrogenase activity =

Magalhaes [38] 2005 Mouse mix 8,500 m 7.4 2 Aconitase activity ↓

Pastoris [29] 1995 Rat gnm 5,860 m 10.1 3 Citrate synthase activity ↓

Malate dehydrogenase activity =

Pastoris [29] 1995 Rat sol 5,860 m 10.1 3 Citrate synthase activity =

Malate dehydrogenase activity =

Morash [31] 2013 Mouse mix 13% O2 13.1 7 Citrate synthase activity =

Aconitase activity =

Dutta [28] 2009 Rat mix 349 mmHg 10.3 7 Citrate synthase activity ↓

Malate dehydrogenase activity ↓

Succinate dehydrogenase activity ↓

Vigano [16] 2008 Human vl 4,559 m 12.4 8 Aconitase levels ↓

α-ketoglutarate dehydrogenase levels ↓

Malate dehydrogenase levels ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 9 Citrate synthase activity ↓

De Palma [27] 2007 Rat gnm 10% O2 10.1 14 Aconitase levels ↓

Malate dehydrogenase levels ↓

Pyruvate dehydrogenase levels ↓

Succinyl coenzyme A synthetase levels ↓

Young [22] 1984 Human vl 4,300 m 12.8 18 Malate dehydrogenase activity =

Levett [18] 2012 Human vl 5,300 m 11.3 19 Citrate synthase levels =

Citrate synthase expression =

Green [15] 1992 Human vl 4,300 m 12.8 21 Succinate dehydrogenase activity =

Green [19] 2000 Human vl 6,194 m 10.1 21 Citrate synthase activity =

Daneshrad [24] 2000 Rat sol 10% O2 10.1 21 Citrate synthase activity =

Takahashi [34] 1993 Rat pla 10% O2 10.1 28 Malate dehydrogenase activity ↓

Takahashi [34] 1993 Rat sol 10% O2 10.1 28 Malate dehydrogenase activity =

Beaudry [39] 2010 Mouse gnm 480 mmHg 13.4 28 Citrate synthase activity =

Wuest [40] 2009 Rat pla 410 mmHg 11.5 28 Succinate dehydrogenase activity =

Jacobs [36] 2013b Human vl 3,454 m 14.2 28 Citrate synthase activity =

Galbes [32] 2008 Rat q 4,000 m 13.3 35 Citrate synthase activity =

Green [17] 1989 Human vl 8,848 m 7.1 40 Citrate synthase activity ↓

Succinate dehydrogenase activity ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 63 Citrate synthase activity ↓

Abdelmalki [23] 1996 Rat sol 13% O2 13.1 64 Citrate synthase activity =

Abdelmalki [23] 1996 Rat pla 13% O2 13.1 64 Citrate synthase activity ↓

Abdelmalki [23] 1996 Rat rq 13% O2 13.1 64 Citrate synthase activity =

Abdelmalki [23] 1996 Rat wq 13% O2 13.1 64 Citrate synthase activity =

Levett [18] 2012 Human vl 8,848 m 7.1 66 Citrate synthase levels ↓

Mizuno [33] 2008 Human vl 5,250 m 11.4 75 Citrate synthase activity =

↑ Change in biomarker is indicative of an increase in TCA cycle function in hypoxia.
= No change in biomarker in hypoxia.
↓ Change in biomarker is indicative of a decrease in TCA cycle function in hypoxia.
Abbreviations: edl extensor digitorum longus, gnm gastrocnemius, mix mixed skeletal, pla plantaris, q quadriceps, rq red quadriceps, sol soleus, vl vastus lateralis,
wq white quadriceps.
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Table 5 The effects of environmental hypoxia on biomarkers of oxidative phosphorylation in skeletal muscle
First author Year Organism Muscle model Hypoxia model p(O2)min (kPa) Duration (d) Marker Change

Morash [31] 2013 Mouse mix 13% O2 13.1 1 Complex I OXPHOS =

Complex II OXPHOS =

Complex IV OXPHOS =

Magalhaes [38] 2005 Mouse mix 8,500 m 7.4 2 Complex II OXPHOS ↓

Pastoris [29] 1995 Rat sol 5,860 m 10.1 3 Complex III activity =

Complex IV activity =

Pastoris [29] 1995 Rat gnm 5,860 m 10.1 3 Complex III activity =

Complex IV activity ↓

Morash [31] 2013 Mouse mix 13% O2 13.1 7 Complex I OXPHOS =

Complex II OXPHOS =

Complex IV OXPHOS =

Vigano [16] 2008 Human vl 4,559 m 12.4 8 Complex III levels ↓

Complex V levels ↓

ETF levels ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 9 Complex IV activity ↓

Jacobs 2013a Human vl 12.4 10 Complex I OXPHOS =

Complex II OXPHOS =

Complex I+II OXPHOS =

De Palma [27] 2007 Rat gnm 10% O2 10.1 14 Complex V levels ↓

Daneshrad [42] 2001 Rat sol 10% O2 10.1 21 OXPHOS ↑

Beaudry [39] 2010 Mouse gnm 480 mmHg 13.4 28 Complex IV activity =

Gamboa [41] 2010 Mouse gnm 10% O2 10.1 28 Complex II levels ↓

Complex IV levels ↓

Complex V levels ↓

Gamboa [43] 2012 Mouse mix 10% O2 10.1 28 Complex IV levels ↓

Complex V activity ↑

Complex I OXPHOS ↓

Jacobs [36] 2013b Human vl 3,454 m 14.2 28 Complex I OXPHOS ↓

Complex II OXPHOS ↓

Complex I+II OXPHOS ↓

Complex IV activity =

McClelland [25] 2002 Rat sol 4,300 m 12.8 56 Complex IV activity ↓

McClelland [25] 2002 Rat pla 4,300 m 12.8 56 Complex IV activity ↓

McClelland [25] 2002 Rat gnm 4,300 m 12.8 56 Complex IV activity =

Chaillou [14] 2013 Rat pla 5,500 m 11.0 63 Complex IV activity ↓

Levett [18] 2012 Human vl 8,848 m 7.1 66 Complex I expression =

Complex I levels ↓

Complex II levels =

Complex III levels =

Complex IV expression =

Complex IV levels ↓

Complex V expression =

Complex V levels ↓

↑ Change in biomarker is indicative of an increase in oxidative phosphorylation in hypoxia.
= No change in biomarker in hypoxia.
↓ Change in biomarker is indicative of a decrease in oxidative phosphorylation in hypoxia.
Abbreviations: gnm gastrocnemius, mix mixed skeletal, pla plantaris, sol soleus, vl vastus lateralis.
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Table 6 The effects of environmental hypoxia on biomarkers of mitochondrial density in skeletal muscle

First author Year Organism Muscle model Hypoxia model p(O2)min (kPa) Duration (d) Marker Change

Morash [31] 2013 Mouse mix 13% O2 13.1 1 Citrate synthase activity =

Complex IV OXPHOS =

Magalhaes [38] 2005 Mouse mix 8,500 m 7.4 2 Complex II OXPHOS ↓

Magalhaes [46] 2007 Mouse mix 8,500 m 7.4 2 Bax expression ↑

Bcl-2 expression ↓

Pastoris [29] 1995 Rat sol 5,860 m 10.1 3 Complex IV activity =

Citrate synthase activity =

Pastoris [29] 1995 Rat gnm 5,860 m 10.1 3 Complex IV activity ↓

Citrate synthase activity ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 3 BNIP3 expression =

PGC-1α expression =

Morash [31] 2013 Mouse mix 13% O2 13.1 7 Citrate synthase activity =

Complex IV OXPHOS =

Dutta [28] 2009 Rat mix 349 mmHg 10.3 7 Citrate synthase activity ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 9 Complex IV activity ↓

Citrate synthase activity ↓

PGC-1α expression ↑

BNIP3 expression =

Jacobs [35] 2013a Human vl 4,559 m 12.4 10 Complex I OXPHOS capacity =

Complex II OXPHOS capacity =

Complex I+II OXPHOS capacity =

Levett [18] 2012 Human vl 5,300 m 11.3 19 Mitochondrial density =

PGC-1α levels =

Green [19] 2000 Human vl 6,194 m 10.1 21 Citrate synthase activity =

Daneshrad [24] 2000 Rat sol 10% O2 10.1 21 Citrate synthase activity =

Daneshrad [42] 2001 Rat sol 10% O2 10.1 21 OXPHOS ↑

Beaudry [39] 2010 Mouse gnm 480 mmHg 13.4 28 Complex IV activity =

Citrate synthase activity =

Gamboa [41] 2010 Mouse gnm 10% O2 10.1 28 Mitochondrial density =

BNIP3 expression =

Complex IV levels ↓

PGC-1α levels =

Gamboa [43] 2012 Mouse mix 10% O2 10.1 28 Complex I OXPHOS ↓

Jacobs [36] 2013b Human vl 3,454 m 14.2 28 Complex I OXPHOS ↓

Complex II OXPHOS ↓

Complex I+II OXPHOS ↓

Complex IV activity =

Citrate synthase activity =

Galbes [32] 2008 Rat q 4,000 m 13.3 35 Citrate synthase activity =

Green [17] 1989 Human vl 8,848 m 7.1 40 Citrate synthase activity ↓

MacDougall [44] 1991 Human vl 8,848 m 7.1 40 Mitochondrial density =

van Ekeren [47] 1992 Rat edl 8% O2 8.1 45 Mitochondrial density ↑

van Ekeren [47] 1992 Rat sol 8% O2 8.1 45 Mitochondrial density ↓

Hoppeler [45] 1990 Human vl 5,000 m 11.7 56 Mitochondrial density ↓
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Table 6 The effects of environmental hypoxia on biomarkers of mitochondrial density in skeletal muscle (Continued)

McClelland [25] 2002 Rat sol 4,300 m 12.8 56 Complex IV activity ↓

McClelland [25] 2002 Rat gnm 4,300 m 12.8 56 Complex IV activity =

McClelland [25] 2002 Rat pla 4,300 m 12.8 56 Complex IV activity ↓

Chaillou [14] 2013 Rat pla 5,500 m 11.0 63 Complex IV activity ↓

Citrate synthase activity ↓

Abdelmalki [23] 1996 Rat sol 13% O2 13.1 64 Citrate synthase activity =

Abdelmalki [23] 1996 Rat pla 13% O2 13.1 64 Citrate synthase activity ↓

Abdelmalki [23] 1996 Rat rq 13% O2 13.1 64 Citrate synthase activity =

Abdelmalki [23] 1996 Rat wq 13% O2 13.1 64 Citrate synthase activity =

Levett [18] 2012 Human vl 8,848 m 7.1 66 Mitochondrial density ↓

PGC-1α levels ↓

PGC-1α expression =

Mizuno [33] 2008 Human vl 5,250 m 11.4 75 Citrate synthase activity =

↑ Change in biomarker is indicative of an increase in mitochondrial density in hypoxia.
= No change in biomarker in hypoxia.
↓ Change in biomarker is indicative of a decrease in mitochondrial density in hypoxia.
Abbreviations: gnm gastrocnemius, mix mixed skeletal, pla plantaris, q quadriceps, rq red quadriceps, sol soleus, vl vastus lateralis, wq white quadriceps.
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an enzyme of the TCA cycle, are known to be particularly
susceptible to HIF-mediated loss of function via miR-210
upregulation [50,51].
It has been hypothesised that environmental hypoxia

could alter the balance of substrate utilisation, with an
enhanced use of carbohydrates and a correspondingly di-
minished use fatty acids [11]. Indeed in the hypoxic rat
heart, a downregulation of fatty acid oxidation has been
reported [52,53]. Such a substrate switch would be ex-
pected to be beneficial, as the oxidation of fatty acids re-
quires more O2 per ATP synthesised than the complete
oxidation of carbohydrates [54]; thus, an increased reli-
ance on carbohydrates may improve oxygen efficiency.
If such a hypoxia-induced switch did occur, it might
be expected that biomarkers for β-oxidation would be at-
tenuated more frequently than biomarkers for oxidative
phosphorylation. However, this does not appear to be the
case, as 8/22 (36%) hypoxic settings induced a significant
decrease in a biomarker of β-oxidation whilst 11/19 (58%)
altered oxidative phosphorylation. Of those settings in
which biomarkers of both β-oxidation and oxidative phos-
phorylation were measured, 1/4 showed a decrease in
oxidative phosphorylation with no change in β-oxidation
[36], 2/4 showed a decrease in both [16,18] and 1/4 re-
ported no change in either [35]. Work from our laboratory
in rat soleus found that oxygen consumption in the pres-
ence of an acyl-carnitine was lower following hypoxic ex-
posure, whilst respiration when complexes I and II were
activated directly was unaltered [31], which is indicative of
a substrate switch. In humans, however, the opposite was
found to be true, as acyl-carnitine-driven oxygen con-
sumption was unchanged by hypoxia, whilst complex I +
II-driven respiration was diminished [36]. Roberts et al.
showed that 21 d at 4,300 m increased glucose uptake
[20] and decreased fatty acid oxidation [30] in human
m. vastus lateralis. It is unclear, however, whether this
increase in glucose uptake supported increased lactate
production through lactate dehydrogenase (LDH) or pyru-
vate oxidation via pyruvate dehydrogenase (PDH) and the
TCA cycle. Research into PDH activity following hypoxic
exposure is limited, though LDH activity has been re-
ported to rise following hypoxic exposure in humans [19]
and rats [28]. A direct comparison of activities of LDH
and PDH following hypoxia would be revealing.
Whilst oxidative processes are selectively downregulated

in the skeletal muscle following exposure to environmen-
tal hypoxia, in contrast to studies in cultured cells, glyco-
lytic markers appear to remain largely unchanged. It is
noteworthy, however, that there has been a distinct lack of
direct measurements of glycolytic flux in vivo or ex vivo
following hypoxic exposure. These would be revealing, as
glycolytic flux can increase in skeletal muscle by up to
1,000-fold upon the onset of high-intensity exercise [55].
Resting glycolytic flux is thus significantly below capacity,
and as such measures of capacity, by protein expression or
enzyme activity, would not accurately reflect flux in vivo
at normal levels of exertion. Even so, our analysis of bio-
markers of glycolytic capacity suggests that the relative
contribution of glycolytic versus oxidative ATP production
is increased by a hypoxic stimulus and this might be exag-
gerated upon exertion. An increased dependence on gly-
colysis would improve oxygen economy but would limit
the scope for ATP production in the respiring muscle and
result in inefficient use of fuel reserves. The ‘lactate para-
dox’ originally described by West [56] states that short-
term environmental hypoxia does not alter concentrations
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Figure 3 The effects of environmental hypoxia, in studies of rodent and human skeletal muscle, on (a) glycolysis, (b) β-oxidation,
(c) TCA cycle, (d) oxidative phosphorylation and (e) mitochondrial density with varying duration and estimated environmental p(O2)
of the hypoxic setting. Increase indicates settings where at least one biomarker of the process was significantly increased by hypoxia and none
decreased; decrease indicates settings where at least one biomarker of the process was significantly decreased by hypoxia and none increased;
unchanged indicates settings where no biomarker was significantly altered by hypoxia; and unclear indicates settings where at least one
biomarker was increased and another decreased by hypoxia.
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of blood lactate ([Lab]) during any given submaximal
exercise workload, yet work capacity decreases mark-
edly in hypoxic environments; hence, [Lab] is lower at
maximal workloads. The literature might support this
assertion, as glycolytic flux is on the whole unaffected
by hypoxic exposure. Today, the lactate paradox is
more commonly defined as the phenomenon in which
an acute sojourn at altitude induces an increase in blood-
lactate accumulation during exercise in the short term, yet
this decreases after chronic exposure [21,57,58]. However,
whilst this may reflect some aspect of metabolic remodel-
ling following hypoxic acclimation, current explanations
for this phenomenon remain controversial and probably
involve factors beyond the mere capacity for substrate
utilisation [59,60].
The primary strength of our approach is that we provide
a thorough and, as far as possible, objective analysis of the
literature to date. By collating the available data from a
range of animal models and different muscles, it is easy to
identify clear, repeatable trends in the effects of environ-
mental hypoxia on aspects of skeletal muscle energy metab-
olism. Moreover, the exclusion of datasets with
confounding factors (e.g. explicit exercise training or
pharmacological therapy) maximises the likelihood that
these trends are a consequence of environmental hypoxia
alone, with the caveat that a sojourn to altitude in itself in-
evitably introduces confounding variables other than hyp-
oxia, e.g. cold, altered nutrition and possibly infection or
gastrointestinal upset. Organising observations of bio-
markers into hypoxic ‘settings’ allows for the fact that these
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Figure 4 The effects of environmental hypoxia, in human m. vastus lateralis only, on (a) glycolysis, (b) β-oxidation, (c) TCA cycle,
(d) oxidative phosphorylation and (e) mitochondrial density with varying duration and estimated environmental p(O2) of the hypoxic
setting. Increase indicates settings where at least one biomarker of the process was significantly increased by hypoxia and none decreased;
decrease indicates settings where at least one biomarker of the process was significantly decreased by hypoxia and none increased; unchanged
indicates settings where no biomarker was significantly altered by hypoxia; and unclear indicates settings where at least one biomarker was
increased and another decreased by hypoxia.
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observations are unlikely to be independent and sub-
categorising these settings by duration and degree of hyp-
oxic exposure and human versus rodent studies gives insight
into the process of acclimation to hypoxic environments.
There are, however, a number of limitations to the

methods used in this review. First, a wide range of animal
Table 7 Time course of hypoxic response

Duration Glycolysis β-oxidation TCA cycle functi

↑ = ↓ ↑ = ↓ ↑ =

Short 0% 50% 50% 0% 75% 25% 0% 50%

Medium 33% 50% 17% 0% 67% 33% 0% 86%

Long 0% 50% 50% 0% 50% 50% 0% 50%

The percentage of hypoxic settings in which biomarkers report a significant decrea
m. vastus lateralis, following short- (0–14 d), medium- (15–42 d) or long- (43–90 d) t
and muscle models were accepted for analysis in this
review, which, whilst a strength in itself, would have
led to the inclusion of a number of different control
groups across different studies, introducing baseline vari-
ation. Second, the time-dependence of rodent and hu-
man responses would likely be different, though we
on Oxidative phosphorylation Mitochondrial density

↓ ↑ = ↓ ↑ = ↓

50% 0% 50% 50% 0% 100% 0%

14% 0% 0% 100% 0% 60% 40%

50% 0% 0% 100% 0% 33% 67%

se (↓), a significant increase (↑) or unchanged/unclear results (=) in human
erm exposure to an environmental p(O2) <15 kPa.
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have considered data from human m. vastus lateralis sep-
arately where possible. Third, metabolic studies of muscles
are beset by confounding factors relating to prior training
status, species, fibre types and possibly even the specific
skeletal muscle studied [61,62]. Fourth, whilst hypoxic set-
tings taken from the same study are treated as independ-
ent in this review, the same equipment, experimenters
and techniques were most likely used in each setting and
thus a directional change in a biomarker might be more
likely to be observed in two settings from the same paper
than in two settings from different papers. Indeed, five
rodent studies looked at different muscles presumably
within the same animals in most cases, generating mul-
tiple settings (by our definition) which were clearly not in-
dependent. An alternative approach might have arbitrarily
excluded one or more sets of data or attempted to com-
bine findings or find consensus across different muscles;
however, these approaches would each have been prob-
lematic in terms of presenting a complete set of findings
or introducing bias.

Conclusions
The literature suggests that skeletal muscle oxidative me-
tabolism is lowered by exposure to environmental hyp-
oxia, which may precede a loss in muscle mitochondrial
density. Meanwhile, the total capacity for skeletal muscle
glycolysis is not consistently altered by environmental
hypoxia. Taken together, the literature is not clear on
whether a hypoxia-induced substrate switch from fatty
acid oxidation to glucose oxidation occurs within the
mitochondria of skeletal muscle as it does in the hypoxic
rat heart, for instance. Environmental hypoxia does
however induce a selective attenuation of whole muscle
fatty acid oxidation, whilst glucose uptake is maintained
or increased, perhaps to support glycolytic flux in the
face of a downregulation of oxidative metabolism, opti-
mising the pathways of ATP synthesis for the hypoxic
environment.
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